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A Machine Learning System for Precipitation
Estimation Using Satellite and Ground

Radar Network Observations
Haonan Chen , Member, IEEE, V. Chandrasekar, Fellow, IEEE, Robert Cifelli, and Pingping Xie

Abstract— Space-based precipitation products are often used
for regional and/or global hydrologic modeling and climate
studies. A number of precipitation products at multiple space and
time scales have been developed based on satellite observations.
However, their accuracy is limited due to the restrictions on spa-
tiotemporal sampling of the satellite sensors and the applied para-
metric retrieval algorithms. Similarly, a ground-based weather
radar is widely used for quantitative precipitation estimation
(QPE), especially after the implementation of dual-polarization
capability and urban scale deployment of high-resolution X-band
radar networks. Ground-based radars are often used for the
validation of various spaceborne measurements and products.
This article introduces a novel machine learning-based data
fusion framework to improve the satellite-based precipitation
retrievals by incorporating dual-polarization measurements from
a ground radar network. The prototype architecture of this fusion
system is detailed. In particular, a deep learning multi-layer
perceptron (MLP) model is designed to produce the rainfall
estimates using the geostationary satellite infrared (IR) data
and low earth orbit satellite passive microwave (PMW)-based
retrievals as inputs. The high-quality rainfall products from
the ground radar network are used as the target labels to
train this MLP model. An urban scale demonstration study
over the Dallas–Fort Worth (DFW) metroplex is presented.
In addition, the Climate Prediction Center morphing technique
(i.e., CMORPH) is adopted for preprocessing of the satellite
observations. Rainfall products from this deep learning system
are evaluated using the standard CMORPH products. The results
show that the proposed data fusion framework can be used
for generating accurate precipitation estimates and could be
considered as an alternative tool for developing future satellite
retrieval algorithms.
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I. INTRODUCTION

PRECIPITATION plays a key role in understanding the
global, continental, and regional water cycles. Accurate

precipitation measurements or estimates are vital in various
climate, hydrologic, and weather forecast models. Therefore,
a large infrastructure has been built around the world over
a period of time to measure precipitation and its space–time
distributions. Typical instruments include rain gauges that can
directly measure rainfall, and remote sensors, such as weather
radars and satellites, can indirectly estimate precipitation.

Rain gauges have traditionally been used for precipitation
estimation. However, a large number of rain gauges must be
deployed in order to capture the complex spatial variabilities
of precipitation since gauges only provide pointwise measure-
ments. In the real world, this is neither possible nor necessary
due to the arduous nature of deployment and maintenance.
A recent study by Kidd et al. [1] concluded that the total area
measured globally by all currently available rain gauges was
surprisingly small, equivalent to less than half a football field.

Compared with rain gauges, satellites have better cov-
erage over the globe, especially over the ocean and polar
regions. A number of quasi-global satellite precipitation prod-
ucts at different temporal and spatial resolutions have been
developed in recent years, including the precipitation estima-
tion from remotely sensed information using artificial neural
network (PERSIANN) and its improved versions [2]–[4],
the Tropical Rainfall Measuring Mission (TRMM) Multisatel-
lite Precipitation Analysis (TMPA) [5], the Global Satellite
Mapping of Precipitation (GSMaP) [6], [7], the Climate Pre-
diction Center (CPC) MORPHing technique (CMORPH) [8],
[9], and the recent Integrated Multi-satellitE Retrievals for
Global Precipitation Measurement (IMERG) [10]. These
satellite-based precipitation products are commonly used for
natural disaster monitoring worldwide and for initializing
large-scale numerical weather prediction models and evalu-
ating the model-based precipitation forecasts (see [11], [12]).

Different satellite precipitation products are derived using
different techniques. However, all satellite-based products are
essentially derived using either geostationary (GEO) satellite
infrared (IR) data or passive microwave (PMW) measurements
from low earth orbit (LEO) satellite sensors or a combination
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of both. The IR-based algorithms estimate the rain rates
based on cloud-top brightness temperatures [13]. In general,
a lower temperature will be associated with more precipitation.
Such algorithms are adequate for convective rainfall, but not
for stratiform or warm-top rainfall [14]. Compared with IR
methods, the PMW-based retrievals have better physics, that
is, at low-frequency bands, PMW sensors are able to sense
the thermal emission of raindrops, whereas at high-frequency
bands, the PMW sensors can detect scattering properties of ice
particles in the precipitation layer and on tops of convective
systems [15], [16]. IR data and PMW measurements are
often combined to derive improved precipitation products.
For example, the CMORPH product takes advantage of the
high temporal resolution of the GEO satellite IR imagery
to create motion vectors of the cloud systems and subse-
quently applies the cloud motion vectors to the PMW-based
retrievals to produce precipitation estimates over the whole
globe [8], [9].

Although space-based precipitation products provide an
excellent tool for large-scale hydrologic and climate studies
as well as improved situational awareness for operational
forecasts, their accuracy is restricted due to the limitations of
spatial and temporal sampling and the implemented parametric
retrieval algorithms [17], [18], particularly for light precip-
itation or extreme events such as heavy rain. On the other
hand, ground-based weather radar has shown great advantages
in conducting high-resolution precipitation observations over
wide areas in a relatively short time span. In addition, polar-
ization diversity has great potential to characterize precipita-
tion microphysics through observing the internal structure of
storms and associated raindrop size distributions [19]–[21].
Therefore, ground-based, dual-polarization radar systems are
widely used in hydrometeorological applications, and they
serve as cornerstones of the national severe weather fore-
cast and warning infrastructure in many countries. Recently,
the sensing capabilities of the U.S. National S-band Weather
Radar Network were further enhanced by the deployment of
high-resolution short-wavelength (i.e., X-band) polarimetric
gap-filling radars [22]–[25]. These X-band radars are develop-
ing their own operational domains for disaster detection and
mitigation, especially in urban environments [25]–[27]. One
of the successful examples is the research-to-operations radar
network deployed in the Dallas–Fort Worth (DFW) metroplex
by the National Science Foundation Engineering Research
Center for Collaborative Adaptive Sensing of the Atmosphere
(CASA) [23], [28], [29]. To date, the CASA DFW network
has been operating for over seven years, providing real-time
end-to-end weather information to weather forecasters, public
safety officials, and other stakeholders in the DFW area.

Ground radar-based precipitation estimates are also widely
used for the validation of various satellite products, especially
instantaneous precipitation rates [30]–[35]. Ground radar sys-
tems are always key components in the ground validation
activities of the National Aeronautics and Space Adminis-
tration (NASA) Precipitation Measurement Missions (PMM).
In addition, the ground radar-based precipitation estimates are
often used as the references in deriving parametric algorithms
for satellite precipitation retrievals. For example, the IR-based

parametric rainfall algorithms can be obtained through non-
linear regression between the radar-derived precipitation rates
and the collocated cloud-top brightness temperature informa-
tion [13]. Nevertheless, most of these previous studies only
used ground radar products as independent sources for verify-
ing satellite products (see [31], [34], [36]–[38]). In addition,
almost all the satellite-based rainfall algorithms derived with
the aid of radar rainfall estimates are in simple parametric
forms [39]. Very few studies have focused on combining
ground radar and satellite precipitation measurements for
improved precipitation estimation. The more sophisticated
nonparametric approaches are rarely used in regard to this
matter. To this end, this article introduces an innovative
machine learning-based mechanism to improve spaceborne
precipitation retrievals by incorporating dual-polarization mea-
surements from a ground-based radar network.

This article is also motivated by the rapid development of
deep learning approaches that have been successfully imple-
mented in many applications [40]. In particular, a multi-layer
perceptron (MLP) system is designed using the PMW and
IR data as inputs and the ground radar-derived precipitation
products as target labels to train the MLP model. In Section II,
the generic machine learning system for radar and satellite
precipitation data fusion is described, and the design and
optimization of the proposed MLP model will be detailed.
Section III presents an urban scale application of the pro-
posed machine learning approach over the DFW metroplex.
Section IV summarizes the main findings of this study and
suggests the directions for future research.

II. MLP MODEL FOR RADAR AND SATELLITE

PRECIPITATION DATA FUSION

Since McCulloch and Pitts [41] developed the first concep-
tual model of an artificial neural network, its application has
expanded tremendously over the past few decades. Nowadays,
deep neural network (or deep learning) is one of the most
commonly used approaches to machine learning. Therefore,
we consider a deep learning approach in building the machine
learning system for radar and satellite precipitation data fusion.
It should be noted that there may be other machine learning
approaches that are also suitable for this topic, including
inductive logic programming and Bayesian networks, among
others. Finding such approaches is beyond the scope of this
article.

A. System Design

A deep neural network is generally modeled as the collec-
tion of neurons that are connected in an acyclic graph [40].
It is often organized into distinct layers of neurons. As the
fundamental element of a neural network, the artificial neuron
is also referred to as “perceptron,” which takes several inputs
and produces a single output. For a single perceptron that has
n inputs, a simple rule for computing the output is to assign
different weights w1, w2, . . . , wn to each input according to
the importance of the respective inputs to the output. The
perceptron’s output y is determined by the weighted sum
y = f (

∑n
i wi xi + b), where xi is the input element, wi is the
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Fig. 1. Conceptual diagram of a machine learning system for radar and
satellite precipitation data fusion. Essentially, the system is trained to produce
rainfall estimates based on satellite observations/retrievals using ground radar
observations/estimates as training targets.

weight corresponding to input xi , b is an error term, and f (∗)
is the activation function. In this article, the rectified linear
unit (ReLU) f (x) = max(0, x) is employed as the activation
function as it has strong biological and mathematical justifi-
cations [42], [43]. In fact, the ReLU is the most commonly
used activation function in deep learning models today [44].
Fig. 1 shows a conceptual diagram of the machine learning
system designed for satellite and radar precipitation estimation.
In short, the inputs include IR and PMW measurements
from multiple satellite sensors. The outputs are estimated
precipitation rates, and the ground-based radar observations
serve as training targets. The core part of this machine learning
system is an MLP model that ingests radar and satellite data
and produces the corresponding precipitation estimates.

In this article, we use the same inputs as CMORPH,
which include the PMW-based precipitation retrievals and IR
brightness temperature information. In particular, the IR data
are extracted from five GEO satellites, including Himawari-
8 operated by the Japan Meteorological Agency, GOES-
West and GOES-East operated by the National Oceanic
and Atmospheric Administration (NOAA), and Meteosat-7
and Meteosat-10 operated by the European Organisation
for the Exploitation of Meteorological Satellites (EUMET-
SAT). The PMW-based precipitation retrievals are from a
number of LEO satellites, including NOAA polar-orbiting
operational meteorological satellites (NOAA-15, NOAA-16,
NOAA-17, NOAA-18, and NOAA-19), polar-orbiting mete-
orological satellites (MetOp-A and MetOp-B) developed by
the European Space Agency, the U.S. Defense Meteorological
Satellite Program (DMSP) satellites (DMSP-13, DMSP-14,
DMSP-15, DMSP-16, DMSP-17, and DMSP-18), the second
generation of Chinese polar-orbiting meteorological satellite
(FY-3B), and NASA’s TRMM and Aqua satellites. The satellite
measurements are examined by the CMORPH developers
at NOAA/CPC [9] before ingested into the deep learning
model. In addition, we adopt the CMORPH rainfall mapping
technique to combine the data from individual satellites to
latitude and longitude grids on a global scale [8]. In particular,
the combined IR data are produced on 4 km × 4 km grids
every 30 min, while the combined PMW-based retrievals are
generated on 8 km × 8 km grids at the same temporal
resolution. A brief review of the CMORPH rainfall mapping

technique is given in Section III-B. For more details, interested
readers are referred to [8]. Here, it should be noted that the
proposed deep learning model is not limited to the satellite
data used by CMORPH. Measurements from other or future
satellites (some of them are used in the newer version of
CMORPH [9]) can be integrated in a straightforward manner.

The combined IR data and PMW-based retrievals then serve
as key inputs to the deep learning MLP model for precipitation
estimation. Fig. 2 shows the detailed architecture of this data
fusion system, including an input layer, three hidden layers,
and an output layer. In particular, three, nine, and three percep-
trons are devised for the first, second, and third hidden layer,
respectively. The determination of hyperparameters, such as
the number of hidden layers and the number of perceptrons
for each layer, will be discussed in Section II-B.

The system equation of the model shown in Fig. 2 can be
expressed in the following form:

y1 = f (w1x + b1) (1a)

y2 = f (w2y1 + b2) (1b)

y3 = f (w3y2 + b3) (1c)

z = f (w4y3 + b4) (1d)

where x = [x1, tPMW, x2, tIR] is the input vector consisting
of available PMW-based retrievals (x1) and corresponding
time (tPMW), and IR observations (x2) and corresponding
observation time (tIR); y1–y3 are the outputs of three hidden
layers from left to right; w1–w4 are the weight vectors at the
input layer and three hidden layers, respectively; b1–b4 are
the bias terms associated with the input layer and three hidden
layers, respectively; and z is the output of estimated rainfall,
which will be compared with ground radar-based estimates.

Given the temporal resolution of combined satellite data
(see the details in Section III-B), the model is trained and
applied for each half-hour window. At each half-hour window,
the availability of IR data is almost guaranteed at a given
location. In contrast to the IR, the PMW-based retrievals are
severely limited due to the spatial and temporal sampling
natures of LEO satellites. Previous studies have concluded
that PMW sensors could not cover most of the globe unless
the data are composited for 3 h or longer period [8]. When
the PMW-based retrievals are not available during a half-hour
window, CMORPH computes the cross correlation between
the consecutive IR images and propagates adjacent/available
PMW-based retrievals using the derived correlations to obtain
the estimates for the current time frame (t = 0 h) [8], [9].
In this article, we also use available PMW-based retrievals for
time frames when there are no PMW sensor coverages. How-
ever, instead of propagating the existing PMW-based retrievals
using IR-based motion vectors, the proposed deep learning
model directly uses the existing PMW-based estimates. At the
same time, the time difference between the available retrievals
and the current time frame is considered an additional input to
the model. Similar to CMORPH, a 3-h period is considered in
this study when finding available PMW-based retrievals, that
is, at any time (e.g., t = 0 h) when the PMW-based retrievals
are not available, three frames before (i.e., t − 1.5, t − 1, and
t−0.5 h) and three frames after (i.e., t+0.5, t+1, and t+1.5 h)
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Fig. 2. Architecture of the deep learning model for satellite-based precipitation estimation using ground radar observations as references.

are considered. For example, at 02:00 UTC, if both IR data and
PMW-based retrievals are available, x1 and x2 will be assigned
as the PMW-based retrievals and IR data, respectively. Both
tPMW and tIR will be current (i.e., tPMW = 0 h and tIR = 0 h).
Otherwise, if the PMW-based retrievals are not available at
02:00 UTC, the model will use all available PMW data during
00:30-03:30 UTC. If PMW-based retrievals are available at
01:30 and 03:00 UTC, both will be used in x1. Accordingly,
tPMW will be assigned as tPMW = −0.5 h and tPMW = +1 h
for 01:30 and 03:00 UTC data, respectively. Occasionally,
if there are no PMW measurements during a 3-h period,
the closest data (i.e., only one frame) and the corresponding
time difference will be used.

B. Model Selection and Optimization

As in many other machine learning problems, one cannot
know the best values for model hyperparameters, including
the number of hidden layers and learning rate. Essentially,
the configuration of hyperparameters is external to the model
and the hyperparameters cannot be estimated from input
observables. They are usually fixed before the actual train-
ing process begins. As such, the determination of the deep
learning MLP model hyperparameters for robust and accurate
precipitation estimation for a given set of radar and satellite
data partly relies on our experience and experiments. In this
article, we use a grid search approach. As shown in Fig. 3(a),
many hyperparameter candidates are predefined with different
learning rates and numbers of hidden layer and associated
perceptrons. The deep learning model is trained for each
candidate pair to discover the one that results in the most accu-
rate estimates. In the demonstration study (see Section III),
it is found that the MLP model with three hidden layers
that have respective three, nine, and three perceptrons will
produce the best estimates (with sufficient accuracy compared
with the current CMORPH product). This is also why such

Fig. 3. Model selection and optimization. (a) Determination of model
hyperparameters, including the numbers of hidden layers and perceptrons
comprising each layer. The numbers in the parentheses refer to the number of
hidden layers, whereas the values correspond to the number of nodes in each
hidden layer. (b) Optimization of a given model using the gradient descent
approach.

a configuration is used in Fig. 2. Nevertheless, it should be
noted that such hyperparameter setting may need to be fine-
tuned when more data are available or when this model is
applied in different precipitation regimes.
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For the selected hyperparameters, the deep learning model is
optimized using the gradient descent algorithm [45]. Fig. 3(b)
shows the model training process to find the optimal solution.
Essentially, the optimization procedure includes forward prop-
agation for estimation and the backward propagation for error
optimization (or changing weights). It is achieved through the
following four steps.

1) Forward Estimation: Calculate the hidden layer outputs
yi and precipitation estimates z in (1) for given input
satellite data x.

2) Compute Cost Function: Calculate the mean square
error E of z using target labels from ground radar
measurements.

3) Backward Propagation: Compute the gradient ∂ E/∂wi, j

of the cost function E .
4) Gradient Descent: Update weights wi, j using the gradi-

ent from step 3 until an optimal solution is reached.
In particular, the cost function is defined as the mean square

error E of satellite rainfall retrievals with respect to ground
radar rainfall estimates

E = 1

N

∑
(RRR − RRS)2 (2)

where RRS represents the precipitation rate estimated using
satellite data, RRR is the training target label determined by
ground radar network observations, and N is the total number
of precipitation grids. The weights are updated based the
following form:

wi, j (new) = wi, j (old) − ρ
∂ E

∂wi, j (old)
(3)

where ρ is the learning rate of the deep learning MLP model
and wi, j is the weight associated with the j th node of the i th
layer. The learning rate determines how quickly or slowly the
model moves toward the optimal weights/solution. In applica-
tions, the learning rate should satisfy the condition of being
less than 2/λmin to guarantee convergence to the point of local
minimum [46]. Here, λmin represents the minimum eigenvalue
of the input covariance matrix. Based on our experiments,
the learning rates listed in Fig. 3(a) can be adopted in the
proposed deep learning model.

III. URBAN SCALE DEMONSTRATION

IN DFW METROPLEX

The proposed MLP-based framework for radar and satellite
data fusion is rather generic, requiring no restrictions on the
implementation domain or particular type of ground- or space-
based instrument. In other words, this model can be applied
in any climate regions, provided that active radar and passive
satellite measurements coexist. In this section, an urban scale
demonstration study over the DFW metroplex is presented.
The selection of this particular domain is also motivated by
the development of a high-performance rainfall system for the
dense CASA DFW radar network.

A. Ground Radar Rainfall System

The DFW network consists of eight high-resolution X-band
radars and a standard National Weather Service (NWS) Next-
Generation Weather Radar (NEXRAD) system operating at

Fig. 4. Urban scale study domain for the proposed MLP-based precipitation
estimation system. Circles in red (i.e., S-band) and blue (i.e., X-band) denote
the layout of the DFW radar network. The letter symbols, such as “KFWS,”
correspond to the naming of various radars. The grids on top represent a
192 km × 200 km area, where this demonstration study will be focused on.

S-band [24]. All are working in the dual-polarization mode.
Fig. 4 shows the layout of the DFW urban radar network.
The 100-km range ring in red denotes the S-band NEXRAD,
whereas the 40-km range rings in blue represent the coverage
of eight polarimetric X-band radars. In particular, the area
denoted by the grids shows the specific domain of this
demonstration study. Both radar and satellite data are trimmed
to match this 192 km × 200 km area when ingested into the
proposed deep learning model.

Chen and Chandrasekar [26] have developed a real-time
high-quality rainfall system for the DFW radar network. In the
following, a brief description of this urban radar quantita-
tive precipitation estimation (QPE) system is provided. More
details can be found in [24] and [26]. Fig. 5 shows the
schematic of the DFW radar rainfall system, which takes
advantage of the dual-polarization measurements that can be
used to characterize precipitation microphysics. In particular,
this QPE system consists of polarimetric radar rainfall algo-
rithms for both S-band NEXRAD and X-band CASA radars.
At S-band, a blended algorithm is implemented where the
specific rainfall relations are guided by hydrometeor identi-
fication results [21], [47]. In this blended methodology, all
the polarimetric measurements are used, including reflectivity
Zh , differential reflectivity Zdr, specific differential phase Kdp,
and correlation coefficient ρhv. The hydrometeor identification
is determined via a region-based classification scheme that
utilizes a vertical temperature profile with a series of thresh-
olds and ranges of the polarimetric variables [48]. At X-band,
only R(Kdp) is considered since R(Kdp) is the only estima-
tor not affected by rain-path attenuation. In the DFW QPE
system, Kdp fields from the synchronized observations of
the eight X-band radars are merged to Cartesian grids first.
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Fig. 5. Dual-polarization rainfall system for DFW urban radar network. Adapted from [26, Fig. 5].

Fig. 6. Sample instantaneous rainfall rate products from the DFW urban radar network during (a) squall line event on May 29, 2015, and (b) widespread
convective storm event on June 17, 2015. The two rain rate snapshots in (a) or (b) have a 30-min time difference, illustrating the storm change during a
half-hour window. (Right) Rainfall retrievals from satellite-based PMW sensors during this half-hour window, which have much coarser resolution compared
to ground radar-derived products.

Then, the R(Kdp) relation is applied to the composite Kdp
field to produce instantaneous rainfall rate estimates. In the
composite process, the closer one the radar to a given grid
pixel, the higher the priority that radar observation will have in
the QPE. This is to ensure that the observations and estimates
are close to the surface. Then, the S- and X-band estimates are
combined to generate a network-level rainfall product. Overall,
the DFW QPE system produces the real-time rainfall rate
estimates at a spatial scale of 250 m × 250 m, and temporally,
the instantaneous rain rates are updated every minute.

Fig. 6(a) shows the sample rainfall rate estimates from the
DFW radar network during a squall line event on May 29,
2015, at 03:00 and 03:30 UTC. The two rain rate snapshots

have a 30-min time difference, illustrating the storm change
during a half-hour window. For comparison, the combined
PMW-based precipitation retrievals during this half-hour win-
dow (03:00–03:30 UTC), which have much coarser resolution
compared to the ground radar-derived products, are also shown
in Fig. 6(a). Similarly, Fig. 6(b) shows the sample rainfall
products during a widespread convective storm on June 17,
2015. Here, it should be noted that although the PMW-based
retrievals are obtained every 30 min, they essentially represent
the precipitation rates for an instantaneous observing time
within a certain half-hour window, that is, the PMW-based
retrievals on the right of Fig. 6(a) do not really correspond to
an average of rainfall rate for 30 min (i.e., 03:00–03:30 UTC).

Authorized licensed use limited to: COLORADO STATE UNIVERSITY. Downloaded on October 06,2020 at 17:19:03 UTC from IEEE Xplore.  Restrictions apply. 



988 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 58, NO. 2, FEBRUARY 2020

Fig. 7. Radar and satellite data preprocessing, including the spatial averaging of radar and satellite IR data, and temporal averaging of radar-based rainfall
measurements. The preprocessed data will be ingested by the MLP model of the machine learning system in Fig. 2.

Rather, they are estimates for an instant between 03:00 and
03:30 UTC. This is partly why the storm location indicated
by the PMW-based retrievals is somewhat different from that
observed by the radar-based estimates in the left and middle of
Fig. 6. This difference is not as significant during widespread
precipitation events such as that shown in Fig. 6(b). The
mismatching between different data sets should be resolved
before ingesting them to the proposed deep learning MLP
model. Radar and satellite data preprocessing with regard to
this aspect will be detailed in Section III-B.

The DFW QPE system is very robust and has been con-
tinuously working for a number of years without any major
incidents [24]. Quantitative comparison with a large number
of local rain gauges shows that the DFW QPE system prod-
uct has superior performance to both NEXRAD single- and
dual-polarization rainfall products. The normalized standard
error (NSE) of hourly rainfall rate is about 15%, demonstrating
that the quality of the DFW product is among the best radar
QPE results available in the literature (see [49]–[52]). The real-
time QPE products from the DFW radar network are used by
the local Weather Forecast Office and emergency managers
operationally for issuing weather watches and warnings. The
DFW rainfall products also serve as an input to the distributed
hydrologic models for real-time flash flood predictions [53].
It is expected that the DFW radar rainfall data will be a good
data set that can be used to validate various satellite-based
precipitation estimates. In fact, previous studies have already
used the high-resolution DFW rainfall products to validate and
calibrate spaceborne dual-frequency precipitation radar (DPR)

onboard the GPM satellite [32], [33], [54]. Therefore, we use
this high-performance data set to conduct an urban scale
demonstration study of the proposed deep learning model.

B. Data Preprocessing

As mentioned previously (see Section II-A), this article con-
siders the observations from several GEO satellites and a num-
ber of LEO satellites. Each LEO satellite collects observations
according to its own orbit, producing overpass measurements
at different space–time resolutions. As a result, radar and
satellite data preprocessing is necessary before executing the
proposed deep learning model. Fig. 7 shows the preprocessing
of radar and satellite data, including the temporal and spatial
averaging of the high-resolution observations. In particular,
the preprocessing includes the following steps.

First, we use the CMORPH mapping technique to com-
bine individual satellite-based IR data and PMW-derived
estimates (see Block 1 in Fig. 7). With regard to the IR
data, the approach described in [55] is utilized to map each
satellite IR image onto a rectilinear grid at 4 km × 4 km ×
30 min resolution. The global IR data are then constructed
by compositing IR window channel measurements from the
five GEO satellites described in Section II-A. With regard to
the PMW-based retrievals, the estimates from each satellite
are first mapped to the nearest grid point on global rectilinear
grids at 8 km × 8 km resolution (at the equator), which is
determined by compromising the spatial resolution of various
LEO satellite data sources [8]. Temporally, a half-hour interval
is selected for PMW-based precipitation analyses in order to
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Fig. 8. Combined satellite data over the continental United States on June 25,
2014, at 20:00 UTC. (a) IR brightness temperatures mainly observed by
GOES-West and GOES-East. (b) PMW-based rainfall retrievals.

match the resolution of IR data. If two or more estimates
from the same satellite sensor are available for a given grid
pixel, the average of rainfall estimates is calculated and used
for that grid pixel. In reality, this only happens for high-
resolution TRMM-based precipitation retrievals. In addition,
at grid pixels within the satellite swath but with no rainfall
estimates available, an inverse distance squared weighting
interpolation of the nearest rainfall estimates is performed to
create a spatially complete field within the overpass band [8].
For each half-hour window, after this process is done for all
the individual satellites, precipitation retrievals from multiple
satellites are combined according to the precedence of each
sensor type [8], [9]. Fig. 8 shows the examples of combined
IR brightness temperature data and PMW rain rates over the
conterminous United States on June 25, 2014, at 20:00 UTC.
It should be noted that although the global IR data are
generated using five GEO satellites, the composite IR data
used in the deep learning model are essentially from two
satellites covering the continental United States (i.e., GOES-
East and GOES-West).

Second, the spatial resolutions of ground radar-based rain-
fall estimates and the combined IR data are downscaled
to match the coarse resolution of PMW-based retrievals
(see Block 2 in Fig. 7). In particular, at each half-hour window,
the combined IR brightness temperature data on 4 km × 4 km
grids are spatially averaged to 8 km × 8 km resolution. The
high-resolution (i.e., 250 m × 250 m) DFW radar rainfall
products are also remapped on each 8 km × 8 km grid

(see Block 3 in Fig. 7). Therein, 32×32 high-resolution radar
grid pixels are linearly averaged to obtain rainfall estimates
matching a single 8 km × 8 km grid. Temporally, 30 frames
of DFW radar products (1-min resolution) from 00 to 29 min
of each hour are averaged to obtain the estimates for the
first half-hour window, and 30 frames from 30 to 59 min
are averaged for the second half-hour window. The linear
average is employed here only for simplicity’s sake. More
complicated and efficient interpolation approaches to rainfall
data processing that can better reflect the rainfall pattern and
distribution will be investigated in future studies. Overall,
the spatiotemporal resolution of 8 km × 8 km × 30 min is
used in the proposed deep learning MLP model.

In addition, both radar and satellite data are limited to the
192 km × 200 km area shown in Fig. 4. This area is densely
covered by the X-band polarimetric radar network to ensure
high quality of the target labels in the training process of
the designed MLP model. As shown in Fig. 7, this particular
domain includes 24 (latitude) × 25 (longitude) grid pixels of
PMW-based precipitation retrieval at its composite resolution.
The corresponding IR and ground radar data are processed
on the same grids. Furthermore, as detailed in Section II-A,
the PMW-based retrievals are not always available over this
particular study domain due to the limited LEO satellite
overpasses. Instead of using motion vectors derived from the
IR data to propagate PMW-based retrievals (i.e., the CMORPH
approach), this study only considers the available PMW data
and the time difference between the available PMW rain rates
and the IR data. To this end, a time tag is created for each
available PMW frame during the preprocessing. The time tags,
along with the IR data and available PMW-based retrievals,
are used as key inputs to the MLP model. The preprocessed
rainfall estimates from the DFW radar network are considered
the target labels when training the MLP model.

C. Case Studies and Preliminary Results

In this demonstration study, 14 precipitation events that
occurred in 2013, 2014, and 2015 are used in the analysis.
Table I lists the dates of these precipitation events. Among
the 14 events, 12 cases are utilized for training the designed
deep learning MLP model, whereas the other two cases are
used for testing purposes. Note that the separation of training
and testing scenarios is rather random. In total, the training
data set includes 960 h of data (i.e., 1920 half-hour frames).
All the input data, including IR brightness temperature, PMW-
based retrievals, as well as their associated time tags, are
generated on 25 ×24 grids covering the DFW metroplex. The
total number of training data pairs is about 1.15 million. The
DFW radar network-based rainfall products are also generated
for these 14 events. The products for the training events
are used as target labels in the MLP model. After training
the deep learning model for all hyperparameter candidates
[see Fig. 3(a)], the trained (optimal) model is used to process
the satellite data collected for the testing events to produce
the estimated rainfall fields. The DFW radar products for the
testing events are used to evaluate the trained model. The stan-
dard CMORPH products are also utilized to demonstrate the
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TABLE I

TRAINING AND TESTING EVENTS FOR THE
PROPOSED DEEP LEARNING SYSTEM

skill of the proposed deep learning precipitation data fusion
system.

Fig. 9(a) shows the sample rainfall estimates with the
trained MLP model using the satellite-based PMW and IR
data collected for the validation event on June 24, 2014,
at 23:00 UTC. For comparison, Fig. 9(b) and (c) shows the
standard CMORPH products and the corresponding rainfall
estimates from the ground-based DFW radar network, respec-
tively. At this time frame, the combined PMW-based retrievals
are available in this area and are similar to the CMORPH
or MLP-based products. Similarly, Fig. 10 shows the results
for another half-hour frame on June 25, 2014, at 19:00 UTC.
The combined PMW-based retrievals are not available over the
DFW region during this half-hour window, so both CMORPH
and the proposed deep learning MLP model are using tem-
porally surrounding observations to produce estimates for this
time frame. Although there exist noticeable differences among
the three estimates in Fig. 10(a)–(c), their overall patterns
agree with each other fairly well. The results for other time
frames or for the other validation event are not shown since
essentially they show a similar performance. Such qualitative
visual comparisons show that the proposed data fusion system
is very promising in generating precipitation estimates, even
for times when the PMW-based sensors provide no coverage.

In order to further demonstrate the performance of the
proposed deep learning MLP model, the NSEs (NSErain) of
precipitation estimates from this model and CMORPH system
are computed for the products generated during the two
validation events listed in Table I. Assuming the ground radar-
based products (after averaging) as the ground truth, NSErain
is defined as

NSErain = |ER − RR |
RR

(4)

where ER is the number of rainy pixels with rain rates above
a given threshold from either CMORPH or the proposed deep
learning model and RR is the number of rainy pixels in
the DFW radar network-based rainfall estimates. Here, RR is
independent of ER since the ground radar estimates during

Fig. 9. Precipitation products on June 24, 2014, at 23:00 UTC. (a) Estimates
from the proposed deep MLP model. (b) Standard CMORPH product.
(c) Averaged rainfall estimates from the DFW radar network. At this time
frame, the PMW-based retrievals are available, which are similar to the
CMORPH or MLP-based products.

the test scenarios are not used in the training process of the
MLP model.

Table II shows the quantitative evaluation results based on
all the estimates for these two test events. In particular, if a
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Fig. 10. Precipitation products on June 25, 2014 at 19:00 UTC. (a) Estimates
from the proposed deep learning MLP model. (b) Standard CMORPH product.
(c) Averaged rainfall estimates from the DFW radar network. At this time
frame, the PMW-based retrievals are not available over the DFW area.

threshold of 0.5 mm h−1 is applied in the computation, NSErain
of the MLP-based products is about 11%. When a higher
threshold (i.e., 1 mm h−1) is applied, the results become
relatively worse since many grid pixels are reporting very light

TABLE II

NSE OF RAINFALL ESTIMATES FROM THE PROPOSED DEEP LEARNING
MLP MODEL AND THE STANDARD CMORPH SYSTEM. THE

RESULTS SHOWN HERE ARE FOR THE TWO TESTING

EVENTS LISTED IN TABLE I

Fig. 11. Probability distribution of the estimated rain rates from the ground-
based DFW radar network, the proposed deep learning model, and the standard
CMORPH system for two testing events listed in Table I.

rain for most of the time frames during these two events.
The CMORPH products have a similar performance, which
again demonstrates the feasibility of the proposed MLP model
in detecting rainfall. In addition, the probability distribution
function (PDF) of rainfall rates estimated using different
techniques is investigated. Fig. 11 shows the PDFs for rainfall
products derived for the two validation events. Overall, they
agree with each other very well, which further demonstrates
the feasibility of the proposed system. It is also observed
that this nonparametric machine learning approach can capture
low rainfall rates, which is slightly better than CMORPH.
Here, we also note that a more quantitative evaluation is
challenging since the rainfall rates from ground radar represent
an average over each half-hour window, whereas the PMW-
based retrievals (inputs to the model) represent instantaneous
rainfall rates sampled within a certain half-hour window. Such
temporal mismatching may introduce additional errors in the
quantitative evaluation analysis.

IV. SUMMARY AND FUTURE WORK

Due to the limited space–time sampling frequencies of satel-
lite sensors, it is impossible to produce global precipitation
measurements using single-source data [56]. Previous studies
have attempted to combine multi-sourced satellite and rain
gauge data to create spatially complete precipitation products
at the global scale. A typical example is the CMORPH product
developed by the NOAA’s CPC, which combines the existing
LEO satellite PMW-based retrievals and GEO satellite IR
brightness temperature information [8], [9]. The space-based
precipitation products are commonly verified using the ground
radar-derived precipitation estimates [57]. In fact, ground radar
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networks are still the main sources for regional and continen-
tal weather applications. Since the introduction of the dual-
polarization concept [19], [58], tremendous progress has been
made in the field of polarimetric radar systems and rainfall
methodologies. The modern dual-polarization radar offers a
number of advantages over a traditional single-polarization
radar in characterizing precipitation microphysics and particle
size distributions. It is also a powerful tool to discriminate pre-
cipitation echoes from nonprecipitation echoes, such as ground
clutter. In addition, the National Science Foundation (NSF)
Center for CASA has demonstrated that weather sensing in
the lower atmosphere can be further enhanced by deploying
dual-polarization, short-wavelength radar networks.

This article has introduced an innovative machine learn-
ing framework for remote sensing precipitation estimation.
In particular, a deep learning MLP model is designed
to produce rainfall estimates using satellite IR data and
PMW-based retrievals as inputs and the ground radar network-
based estimates as target labels in the training of this MLP
model. An initial experiment has been conducted to verify
the feasibility of this data fusion system using the satel-
lite and CASA radar network observations in DFW metro-
plex. Although more case studies and extensive evaluation
over different climate regions should be performed in the
future, the preliminary results based on the MLP model
are quite promising. The main points are summarized as
follows.

1) Although the CMORPH input data sources are used in
the demonstration study, the deep learning framework is
designed with high flexibility. It is capable of involving
different radar and satellite data sources. Such flexibility
provides an efficient way to include new satellite sensors
to the system and apply this data fusion system in any
other regions where ground radar data are available.

2) The CMORPH rain mapping technique has been
employed to combine data from individual satellites to
common latitude/longitude grids before ingesting them
in the proposed deep learning model. This is also for
the purpose of using the standard CMORPH products to
cross-validate the feasibility of the designed model.

3) The urban scale demonstration study over the DFW
area demonstrates the applicability of the proposed
data fusion framework. Overall, it can capture the pre-
cipitation pattern and intensity fairly well compared
with ground radar-based estimates and the standard
CMORPH products. For the two validation cases pre-
sented in this article, this nonparametric machine learn-
ing approach can capture low rain rates, which is slightly
better than CMORPH.

4) When the PMW-based retrievals are not available for a
given time and location, the proposed MLP model can
still generate reasonable precipitation estimates using
PMW retrievals from the nearby time periods. Compared
with CMORPH that uses cloud motion vectors derived
from the IR data to propagate the PMW-based retrievals,
the nonparametric system developed in this article can
be used as an alternative tool for dealing with incomplete
PMW sensor observations.

Nevertheless, it should be pointed out that although the
results in this demonstration study are quite promising, a lot
of work still needs to be done before using this approach to
produce routine operational products. From an engineering
perspective, the high-quality high-resolution radar data used
in this study are only available over the DFW metroplex.
As such, the designed MLP model is trained only using
local observations in the DFW area. Generic applications of
this locally trained model in other regions are still under
investigation. In addition, if additional radars are available
in other implementation regions (e.g., regions covered by
NEXRAD), the designed data fusion system can be enhanced
with auxiliary radar data, that is, the model should be retrained
to include new radar and satellite data that can better represent
local precipitation microphysics. For regions not covered by
any weather radars (e.g., oceans), we expect that this model
can still be applied to the satellite observations, provided
that the model is trained with ample data representing differ-
ent climatological properties. From the scientific perspective,
the precipitation events over the DFW area are mostly char-
acterized by convective rain. As a result, the trained model
may not be sufficient to represent other precipitation regimes
dominated by stratiform rain. In addition, the temporally
averaged radar data over a half-hour window may not be
sufficient to represent precipitation distributions at any instant
within this 30-min period. This information will be included
along with the second generation of CMORPH products [9].
The target labels (i.e., mean radar estimates over 30 min) will
then need to be replaced with matched instantaneous radar-
based measurements. Furthermore, diurnal cycle and seasonal
variability of precipitation are not considered in this article.
Future research should improve all these aspects.
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